Вам понадобится

  • Карандаш Линейка угольник циркуль транспортир Формулы вычисления угла по длине дуги и радиусу Формулы вычисления сторон геомтрических фигур

Инструкция

На листе бумаги постройте основание нужного геометрического тела. Если вам даны паралеллепипед или , измерьте длину и ширину основания и начертите на листе бумаги прямоугольник с соответствующими параметрами. Для построения развертки а или цилиндра вам необходимо радиус окружности основания. Если она не задана в условии, измерьте и вычислите радиус.

Рассмотрите паралеллепипед. Вы увидите, что все его грани расположены под углом к основанию, но параметры этих граней разные. Измерьте высоту геометрического тела и с помощью угольника начертите два перпендикуляра к длине основания. Отложите на них высоту паралеллепипеда. Концы получившихся отрезков соедините прямой. То же самое сделайте с противоположной стороны исходного .

От точек пересечения сторон исходного прямоугольника проведите перпендикуляры и к его ширине. Отложите на этих прямых высоту паралеллепипеда и соедините полученные точки прямой. То же самое сделайте и с другой стороны.

От внешнего края любого из новых прамоугольников, длина которого совпадает с длиной основания, постройте верхнюю грань паралеллепипеда. Для этого из точек пересечеения линий длины и ширины, расположенных на внешней стороне, проведите перпендикуляры. Отложите на них ширину основания и соедините точки прямой.

Для построения развертки конуса через центр окружности основания проведите радиус через любую точку окружности и продолжите его. Измерьте расстояние от основания до вершины конуса. Отложите это расстояние от точки пересечения радиуса и окружности. Отметьте точку вершины боковой поверхности. По радиусу боковой поверхности и длине дуги, которая равняется длине окружности основания, вычислите угол развертки и отложите его от уже проведенное через вершину основания прямой. С помощью циркуля соедините найденную ранее точку пересечения радиуса и окружности с этой новой точкой. Развертка конуса готова.

Для построения развертки пирамиды измерьте высоты ее сторон. Для этого найдите середину каждой стороны основания и измерьте длину перпендикуляра, опущенного из вершины пирамиды к этой точке. Начертив на листе основание пирамиды, найдите середины сторон и проведите к этим точкам перпендикуляры. Соредините полученные точки с точками пересечения сторон пирамиды.

Развертка цилиндра представляет собой две окружности и расположенный между ними прямоугольник, длина которого равна длине окружности, а высота - высоте цилиндра.

Для изготовления кожухов машин, ограждений станков, вентиляционных устройств, трубопроводов необходимо из листового материала вырезать их развертки.

Разверткой поверхности многогранника называют плоскую фигуру, полученную при совмещении с плоскостью чертежа всех граней многогранника в последовательности их расположения на многограннике.

Чтобы построить развертку поверхности многогранника, нужно определить натуральную величину граней и вычертить на плоскости последовательно все грани. Истинные размеры ребер граней, если они спроецированы не в натуральную величину, находят способами вращения или перемены плоскостей проекций (проецированием на дополнительную плоскость), приведенными в предыдущем параграфе.

Рассмотрим построение разверток поверхности некоторых простейших тел.

Развертка поверхности прямой призмы представляет собой плоскую фигуру, составленную из боковых граней - прямоугольников и двух равных между собой многоугольников оснований. Для примера взята правильная прямая шестиугольная призма (рис. 176, а). Все боковые грани призмы - прямоугольники, равные между собой по ширине а и высоте Н; основания призмы - правильные шестиугольники со стороной, равной а. Так как истинные размеры граней нам известны, нетрудно выполнить построение развертки. Для этого на горизонтальной прямой последовательно откладывают шесть отрезков, равных стороне основания шестиугольника, т. е. 6а. Из полученных точек восставляют перпендикуляры, равные высоте призмы Н, и через конечные точки перпендикуляров проводят вторую горизонтальную прямую. Полученный прямоугольник (Н х 6а) является разверткой боковой поверхности призмы. Затем на одной оси пристраивают фигуры оснований - два шестиугольника со сторонами, равными а. Контур обводят сплошной основной линией, а линии сгиба - штрихпунктирной с двумя точками.

Подобным образом можно построить развертки прямых призм с любой фигурой в основании.

Развертка поверхности правильной пирамиды представляет собой плоскую фигуру, составленную из боковых граней - равнобедренных или равносторонних треугольников и правильного многоугольника основания. Для примера взята правильная четырехугольная пирамида (рис. 176, б). Решение задачи осложняется тем, что неизвестна величина боковых граней пирамиды, так как ребра граней не параллельны ни одной из плоскостей проекций. Поэтому построение начинают с определения истинной величины наклонного ребра SA. Определив способом вращения (см. рис. 173, в) истинную длину наклонного ребра SA, равную s"a` 1 (рис. 176, б), из произвольной точки О, как из центра, проводят дугу радиусом s"a` 1 . На дуге откладывают четыре отрезка, равные стороне основания пирамиды, которое спроецировано на чертеже в истинную величину. Найденные точки соединяют прямыми с точкой О. Получив развертку боковой поверхности, к основанию одного из треугольников пристраивают квадрат, равный основанию пирамиды.

Развертка поверхности прямого кругового конуса представляет собой плоскую фигуру, состоящую из кругового сектора и круга (рис. 176, в). Построение выполняют следующим образом. Проводят осевую линию и из точки, взятой на ней, как из центра, радиусом Rh равным образующей конуса sfd, очерчивают дугу окружности. В данном примере образующая, подсчитанная по теореме Пифагора, равна приблизительно

Цель лекции: изучение свойств развертки и способов построения разверток многогранников и поверхностей вращения

· Развертка поверхностей. Общие понятия.

· Способы построения разверток: методы триангуляции, нормального сечения и раскатки.

· Построение разверток гранных поверхностей и поверхностей вращения.

Развертка поверхностей. Общие понятия

Развертка плоская фигура, полученная при совмещении поверхности геометрического тела с плоскостью (без наложения граней или иных элементов поверхности друг на друга). Развертку можно рассматривать как гибкую, нерастяжимую пленку. Некоторые из представленных таким образом поверхностей можно путем изгибания совместить с плоскостью. При этом, если отсек поверхности может быть совмещен с плоскостью без разрывов и склеивания, то такую поверхность называют развертывающейся , а полученную плоскую фигуру – ее разверткой.
Основные свойства развертки 1 Длины двух соответствующих линий поверхности и ее развертки равны между собой; 2 Угол между линиями на поверхности равен углу между соответствующими им линиями на развертке; 3 Прямой на поверхности соответствует также прямая на развертке; 4 Параллельным прямым на поверхности соответствуют также параллельные прямые на развертке; 5 Если линии, принадлежащей поверхности и соединяющей две точки поверхности, соответствует прямая на развертке, то эта линия является геодезической.

Методы триангуляции, нормального сечения и раскатки

Построение разверток гранных поверхностей и поверхностей вращения

а) Развертка поверхности многогранника.

Разверткой многогранной поверхности называется плоская фигура, получаемая последовательным совмещением всех граней поверхности с плоскостью.

Так как все грани многогранной поверхности изображаются на развертке в натуральную величину, построение ее сводится к определению величины отдельных граней поверхности – плоских многоугольников.

Метод триангуляции

Пример 1. Развертка пирамиды (рисунок 13.1).

При построении развертки пирамиды применяется способ треугольника. Развертка боковой поверхности пирамиды представляет собой плоскую фигуру, состоящую из треугольников – граней пирамиды и многоугольника - основания. Поэтому построение развертки пирамиды сводится к определению натуральной величины основания и граней пирамиды. Грани пирамиды можно построить по трем сторонам треугольников, их образующих.

Рисунок 13.1. Пирамида и её развертка

Для этого необходимо знать натуральную величину ребер и сторон основания. Алгоритм построения можно сформулировать следующим образом (рисунок 13.2):

Рисунок 13.2. Определение истинной величины

основания и ребер пирамиды

Точки, расположенные внутри контура развертки, находят во взаимно однозначном соответствии с точками поверхности многогранника. Но каждой точке тех ребер, по которым многогранник разрезан, на развертке соответствуют две точки, принадлежащие контуру развертки. Примером первой точки на рисунках служит точка К 0 и К ÎSАD , а иллюстрацией второго случая являются точки М 0 и М 0 * . Для определения точки К 0 на развертке пришлось по ее ортогональным проекциям найти длины отрезков АМ (метод замены плоскостей проекций) и (метод вращения). Эти отрезки были использованы затем при построении на развертке сначала прямой S 0 М 0 и, наконец, точки К 0 .

Рисунок 13.3. Построение развертки пирамиды

Способ нормального сечения

В общем случае развертка призмы выполняется следующим образом. Преобразуют эпюр так, чтобы ребра призмы стали параллельны новой плоскости проекций. Тогда на эту плоскость ребра проецируются в натуральную величину.

Пример 2. Развертка призмы (рисунок 13.4).

Пересекая призму вспомогательной плоскостью α , перпендикулярной ее боковым ребрам (способ нормального сечения), строят проекции фигуры нормального сечения – треугольника 1 , 2 , 3 , а затем определяют истинную величину этого сечения. На примере она найдена методом вращения.

В дальнейшем строям отрезок 1 0 -1 0 * , равный периметру нормального сечения. Через точки 1 0 , 2 0 , 3 0 и 1 0 * проводят прямые, перпендикулярные 1 0 -1 0 * , на которых откладывают соответствующие отрезки боковых ребер призмы, беря их с новой фронтальной проекции. Так, на перпендикуляре, проходящем через точку 1 0 , отложены отрезки 1 0 D 0 =1 4 D 4 и 1 0 А 0 =1 4 А 4 .. Соединив концы отложенных отрезков, получают развертку боковой поверхности призмы. Затем достраивают основание.

Способ раскатки

Пример 3. Развертка призмы, частный случай, когда основание призмы на одну из плоскостей проекций проецируется в натуральную величину (рисунок 13.5).

Развертка боковой поверхности такой призмы осуществляется способом раскатки. Этот способ заключается в следующем. Сначала, как и в предыдущем примере, преобразуют эпюр так, чтобы боковые ребра призмы стали параллельны одной из плоскостей проекций.

Рисунок 13.4. Развертка призмы способом нормального сечения

Рисунок 13.5. Развертка призмы способом раскатки

Затем новую проекцию призмы вращают вокруг ребра С 4 F 4 до тех пор пока грань ACDF не станет параллельной плоскости П 4 .

При этом положение ребра С 4 F 4 остается неизменным, а точки принадлежащие ребру AD перемещаются по окружностям, радиус которых определяется натуральной величиной отрезков AC и DF (так как основания призмы параллельны П 1 то на эту плоскость проекций они проецируются без искажения, т.е. R =A 1 C 1 =D 1 F 1 ), расположенных в плоскостях, перпендикулярных ребру С 4 F 4 .

Таким образом, траектории движения точек A и D на плоскость П 4 проецируются в прямые, перпендикулярные ребру С 4 F 4 .

Когда грань ACDF станет параллельна плоскости П 4 , она проецируется на неё без искажения т.е. вершины A и D окажутся удаленными от неподвижных вершин C и F на расстояние, равное натуральной величине отрезков AC и DF . Таким образом, засекая перпендикуляры, по которым перемещаются точки A 4 и D 4 дугой радиуса R =A 1 C 1 =D 1 F 1 , можно получить искомое положение точек развертки A 0 и D 0 .

Следующую грань АBDE вращают вокруг ребра AD . На перпендикулярах, по которым перемещаются точки B 4 и E 4 делают засечки из точек A 0 и D 0 дугой радиуса R =A 1 B 1 =D 1 E 1 . Аналогично строится развертка последней боковой грани призмы.

Процесс последовательного нахождения граней призмы вращением вокруг ребер можно представить как раскатку призмы на плоскость параллельную П 4 и проходящую через ребро С 4 F 4 .

Построение на развертке точки К , принадлежащей боковой грани АBDE, ясно из рисунка. Предварительно через эту точку по грани провели прямую , параллельную боковым ребрам, которая затем построена на развертке.

б) Развертка цилиндрической поверхности.

Развертка цилиндрической поверхности выполняется аналогично развертке призмы. Предварительно в заданный цилиндр вписывают n-угольную призму (рисунок 13.6). Чем больше углов в призме, тем точнее развертка (при n → призма преобразуется в цилиндр).

в) Развертка конической поверхности

Развертка конической поверхности выполняется аналогично развертке пирамиды, предварительно вписав в конус n-угольную пирамиду (рисунок 13.6).

Если задана поверхность прямого конуса, то развертка его боковой поверхности представляет круговой сектор, радиус которого равен длине образующей конической поверхности l , а центральный угол φ =360 о r / l , где r – радиус окружности основания конуса.

Рисунок 13.6. Развертка цилиндрической поверхности

Рисунок 13.7. Развертка конической поверхности

Контрольные вопросы

1 Что называют разверткой поверхности?

2 Какие поверхности называют развертывающимися и какие – неразвертывающимися?

3 Укажите основные свойства разверток

4 Укажите последовательность графических построений разверток поверхностей конуса и цилиндра.

5 Какие способы построения разверток многогранников вы знаете?

Рисунок 1

Для перехода, изображенного на рис. 1 , заданными величинами являются: диаметр отверстия d , стороны основания a и b , высота Н .

Вычертив горизонтальные проекции верхнего и нижнего оснований, т.е. круга и прямоугольника, соединяют вершины прямоугольника с точками 0 и 3 окружности, затем строят фронтальную проекцию перехода.
Боковая поверхность такого перехода является комбинированной поверхностью: она состоит из четырех плоских треугольников, отмеченных на рис.1 ,а цифрами I и II , и из четырех конических участков, обозначенных цифрой III . Вершины этих четырех равных конических поверхностей лежат в вершинах прямоугольника (точки s ), а их основания совпадают с окружностью верхнего основания перехода.

На рис. 1 , б построение развертки перехода начато с построения треугольника I по стороне b и высоте H1 , равной отрезку s ’О’ (рис.1, а). К нему с обеих сторон пристроены развертки смежных с ним и касательных к нему конических поверхностей III .

Натуральные длины образующих S 0 1 0 , S 0 2 0 , S 0 3 0 определены на рис. 1,а способом прямоугольного треугольника и соответственно равны S 0 1 0 , S 0 2 0 , S 0 3 0 . Длина стороны l принята равной длине хорды одного деления основания. Дальнейшее построение развертки ясно из чертежа.

Погрешность при замене дуги хордой для соответствующего числа делений составит для угла α = 30º ~ 1% (при числе делений 3), а при числе делений, равном четырем (α = 22,5º ), ~ 0,56% . (Здесь не учитываются погрешности, связанные с графическим построением развертки).

Аналитический расчет

Натуральные длины образующих могут быть рассчитаны по формуле

Формула 1
где

  • L k - натуральная длина соответствующей образующей;
  • kα - угол, определяющий положение проекции образующей;
  • α = 180º/n при делении половины основания окружности на n равных частей.

Для этого нужно предварительно определить величину с.

Из рисунка 1, видно, что:

Формула 2

Затем, деления окружности основания перехода нужно занумеровать: поставить цифру 0 у горизонтальной проекции наибольшей образующей и от неё начать отсчет углов kα.
Величину cos k&alpha ; для соответствующего деления можно определить по таблице.

Рисунок 2

Для его изготовления кроме размеров H , d и a , нужно задать размер e (смещение центров верхнего и нижнего оснований). Как и в предыдущем случае, соединив точки s с точками 0 и 3 окружности, разбивают боковую поверхность перехода на четыре конические поверхности, обозначенные цифрами IV и V , и четыре треугольника, обозначенных I, II, III и касательных к коническим поверхностям.

Построение развертки аналогично предыдущей и на чертеже не показано. Разница состоит лишь в том, что развертки конических элементов IV и V будут в этом случае неодинаковы, и для треугольников мы тоже будем иметь три разные формы.

Косой переход с квадратного на круглое сечение

Рисунок 3

Боковая поверхность перехода на рис.3 разбита иначе, чем у переходов, показанных на рис. 1 и 2 . Середины сторон основания a и b (точки s и s1) соединены с точками 2 окружности.

В результате этого построения боковая поверхность перехода будет состоять из восьми треугольников I и II касательных к четырём коническим поверхностям III и IV . Построение этой развертки ясно из рис.3, б . Оно аналогично предыдущим, но требует большего числа построений.

По материалам:
«Технические развертки изделий из листового металла» Н.Н. Высоцкая 1968 г. «Машиностроение»

Необходимо построить развертку поверхностей и перенести линию пересечения поверхностей на развертку. В основе данной задачи рассматриваются поверхности (конуса и цилиндра ) с их линией пересечения, приведенные в предыдущей задаче 8 .

Для решения таких задач по начертательной геометрии необходимо знать:

— порядок и методы построения разверток поверхностей;

— взаимное соответствие между поверхностью и ее разверткой;

— частные случаи построения разверток.

Порядок решения з адачи

1. Отметим, что разверткой называется фигура, получаемая в
результате разреза поверхности по какой-либо образующей и постепенного разгибания ее до полного совмещения с плоскостью. Отсюда развертка, прямого кругового конуса — сектор с радиусом, равным длине образующей, и основанием, равным длине окружности основания конуса. Все развертки строятся только из натуральных величин.

Рис.9.1

— длину окружности основания конуса, выраженную в натуральной величине делим на ряд долей: в нашем случае — 10, от количества долей зависит точность построения развертки (рис.9.1.а );

— откладываем полученные доли, заменяя их хордами, на длине
дуги, проведенной радиусом, равным длине образующей конуса l=|Sb|. Начало и конец отсчета долей соединяем с вершиной сектора — это и будет развертка боковой поверхности конуса.

Второй способ:

— строим сектор с радиусом, равным длине образующей конуса.
Заметим, что как в первом, так и во втором случае за радиус берется крайняя правая или левая образующие конуса l=|Sb|, т.к. они выражены в натуральной величине;

— при вершине сектора откладываем угол а, определяемый по формуле:

Рис.9.2

где r — величина радиуса основания конуса;

l — длина образующей конуса;

360 — постоянная переводная в градусы величина.

К сектору-развертке строим основание конуса радиуса r .

2. По условиям задачи требуется перенести линию пересечения
поверхностей конуса и цилиндра на развертку. Для этого используем свойства взаимной однозначности между поверхностью и ее разверткой, в частности, отметим, что каждой точке на поверхности соответствует точка на развертке и каждой линии на поверхности соответствует линия на развертке.

Отсюда вытекает последовательность перенесения точек и линий
с поверхности на развертку.

Рис.9.3

Для развертки конуса. Условимся, что разрез поверхности конуса произведен по образующей S a . Тогда точки 1, 2, 3,…6
будут лежать на окружностях (дугах на развертке) с радиусами соответственно равными величинам расстояний, взятым по образующей S A от вершины S до соответствующей секущей плоскости с точками 1’ , 2’, 3’…6’ -| S 1|, | S 2|, | S 3|….| S 6| (рис.9.1.б) .

Положение точек на этих дугах определяется расстоянием, взятым с горизонтальной проекции от образующей Sa, по хорде до соответствующей точки, например до точки с, ас=35 мм (рис.9.1.а ). Если расстояние по хорде и дуге сильно разнятся, то для уменьшения погрешности можно разделить большее количество долей и отложить их на соответствующие дуги развертки. Таким способом переносятся любые точки с поверхности на ее развертку. Полученные точки соединятся плавной кривой по лекалу (рис.9.3 ).

Для развертки цилиндра .

Развертка цилиндра есть прямоугольник с высотой, равной высоте образующей, и длиной, равной длине окружности основания цилиндра. Таким образом, для построения развертки прямого кругового цилиндра необходимо построить прямоугольник с высотой, равной высоте цилиндра, в нашем случае 100мм , и длиной, равной длине окружности основания цилиндра, определенной по известным формулам: C =2 R =220мм , или делением окружности основания на ряд долей, как было указано выше. К верхней и нижней части полученной развертки пристраиваем основание цилиндра.

Условимся, что разрез произведен по образующей AA 1 (A A ’ 1 ; AA 1) . Заметим, что разрез следует производить по характерным (опорным) точкам для более удобного построения. Учитывая, что длина развертки есть длина окружности основания цилиндра C , от точки A ’= A ’ 1 разреза фронтальной проекции берем расстояние по хорде (если расстояние большое, то необходимо его разделить на доли) до точки B (в нашем примере — 17мм ) и откладываем его на развертке (по длине основания цилиндра) от точки А. Из полученной точки В проводим перпендикуляр (образующую цилиндра). Точка 1 должна находиться на этом перпендикуляре) на расстоянии от основания, взятого с горизонтальной проекции до точки. В нашем случае точка 1 лежит на оси симметрии развертки на расстоянии 100/2=50мм (рис.9.4) .

Рис.9.4

И так поступаем для нахождения на развертке всех других точек.

Подчеркнем, что расстояние по длине развертки для определения положения точек берется с фронтальной проекции, а расстояние по высоте — с горизонтальной, что соответствует их натуральным величинам. Полученные точки соединяем плавной кривой по лекалу (рис.9.4 ).

В вариантах задач, когда линия пересечения распадается на несколько ветвей, что соответствует полному пересечению поверхностей, способы построения (перенесения) линии пересечения на развертку аналогичны, описанным выше.

Раздел: Начертательная геометрия /